Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model.
نویسندگان
چکیده
OBJECTIVE To verify the biologic links between progressive cellular and structural alterations within knee joint components and development of symptomatic chronic pain that are characteristic of osteoarthritis (OA), and to investigate the molecular basis of alterations in nociceptive pathways caused by OA-induced pain. METHODS An animal model of knee joint OA pain was generated by intraarticular injection of mono-iodoacetate (MIA) in Sprague-Dawley rats, and symptomatic pain behavior tests were performed. Relationships between development of OA with accompanying pain responses and gradual alterations in cellular and structural knee joint components (i.e., cartilage, synovium, meniscus, subchondral bone) were examined by histologic and immunohistologic analysis, microscopic examination, and microfocal computed tomography. Progressive changes in the dynamic interrelationships between peripheral knee joint tissue and central components of nociceptive pathways caused by OA-induced pain were examined by investigating cytokine production and expression in sensory neurons of the dorsal root ganglion and spinal cord. RESULTS We observed that structural changes in components of the peripheral knee joint correlate with alterations in the central compartments (dorsal root ganglia and the spinal cord) and symptomatic pain assessed by behavioral hyperalgesia. Our comparative gene expression studies revealed that the pain pathways in MIA-induced knee OA may overlap, at least in part, with neuropathic pain mechanisms. Similar results were also observed upon destabilization of the knee joint in the anterior cruciate ligament transection and destabilization of the medial meniscus models of OA. CONCLUSION Our results indicate that MIA-induced joint degeneration in rats generates an animal model that is suitable for mechanistic and pharmacologic studies on nociceptive pain pathways caused by OA, and provide key in vivo evidence that OA pain is caused by central sensitization through communication between peripheral OA nociceptors and the central sensory system. Furthermore, our data suggest a mechanistic overlap between OA-induced pain and neuropathic pain.
منابع مشابه
L-Carnitine potentiates the anti-inflammatory and antinociceptive effects of diclofenac sodium in an experimentally induced knee osteoarthritis rat model
Objective(s): The aim of the present research is to investigate the efficacy of L-carnitine (LC) as a complementary therapy to diclofenac sodium (Dic) treatment in a mono-iodoacetate (MIA) induced knee osteoarthritis (OA) rat model, with respect to pain relief and the underlying pathology.Materials and Methods: Fifty adult male albino ra...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملSensory Motor TrainingVersus Impairment Based Training on Pain And Function in Subjects With Knee Osteoarthritis
Background: Osteoarthritis is a degenerative joint disease that affects synovial joints and causes joint damage due to stresses caused by an abnormality in any of the synovial joint tissues, including articular cartilage, subchondral bone, ligaments, menisci, periarticular muscles, peripheral nerves, and synovium. Objectives: To compare the effect of Sensory Motor Training versus Impairment Ba...
متن کاملTonic Modulation of Spinal Hyperexcitability by the Endocannabinoid Receptor System in a Rat Model of Osteoarthritis Pain
OBJECTIVE To investigate the impact of an experimental model of osteoarthritis (OA) on spinal nociceptive processing and the role of the inhibitory endocannabinoid system in regulating sensory processing at the spinal level. METHODS Experimental OA was induced in rats by intraarticular injection of sodium mono-iodoacetate (MIA), and the development of pain behavior was assessed. Extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arthritis and rheumatism
دوره 62 10 شماره
صفحات -
تاریخ انتشار 2010